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Scaling Up LLM Pretraining: 
Parallel Training

Large Language Models: Methods and Applications

Daphne Ippolito and Chenyan Xiong
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Learning Objectives
Optimizer
● Understand various standard optimization methods used for LLM pretraining
● Understand the differences of different numerical types and their usage

Parallel Training
● Understand the standard parallel training methods in LLM pretraining
● Able to implement basic parallel training methods for pretraining (HW5)
● Understand the trade-offs introduced in each parallel training methods
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Outline
Optimization
● Optimization Basics
● Numerical Types

Parallel Training
● Data Parallelism
● Pipeline Parallelism
● Tensor Parallelism
● Combination of Parallelism
● ZeRO Optimizer
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Optimization: Recap of Stochastic Gradient Descent
In deep learning, mini-batch learning is the norm and Stochastic Gradient Descent (SGD) is the basis 
optimizer

Compared to classic convex optimization:
● Each step only uses a small sub sample of data: stochastic sampling
● Non-convex optimization has many local optimal with different effectiveness

[1] Sebastian Ruder. “An overview of gradient descent optimization Algorithms”. arXiv 2017
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Optimization: Recap of Stochastic Gradient Descent
In deep learning, mini-batch learning is the norm and Stochastic Gradient Descent (SGD) is the basis 
optimizer

Challenge: How to select the right step size?
● Different parameters have different behaviors: 

○ norm, sensitivity, influence to optimization process, etc.
○ have different preferences on step size

● No way to manually tune step size per parameter
○ Millions or billions of hyperparameters to tune SGD on two parameter loss contours [1]

[1] Sebastian Ruder. “An overview of gradient descent optimization Algorithms”. arXiv 2017
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Optimization: Challenge of SGD
In deep learning, mini-batch learning is the norm and Stochastic Gradient Descent (SGD) is the basis 
optimizer

Challenge: How to select the right step size?
→Solution: Dynamic learning rate per parameter, Adaptive gradient methods (AdaGrad [2])

Reweight per parameter step size by 
its accumulated past norm

[2] Duchi et al. “Adaptive Subgradient Methods for Online Learning and Stochastic Optimization”. JMLR 2011
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Optimization: Challenge of SGD
●  

Reweight per parameter step size by 
its accumulated past norm

[2] Duchi et al. “Adaptive Subgradient Methods for Online Learning and Stochastic Optimization”. JMLR 2011
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Optimization: Challenge of SGD
In deep learning, mini-batch learning is the norm and Stochastic Gradient Descent (SGD) is the basis 
optimizer

Challenge: Local updates
● Only uses information from current mini-batch

○ Can easily stuck in local optima

[3] https://towardsdatascience.com/a-visual-explanation-of-gradient-descent-methods-momentum-adagrad-rmsprop-adam-f898b102325c

Optimization with Local Optima [3]
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Optimization: Challenge of SGD
●  

[1] Sebastian Ruder. “An overview of gradient descent optimization Algorithms”. arXiv 2017

Momentum of Gradient
Updating with gradient momentum
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Optimization: Challenge of SGD
●  

[1] Sebastian Ruder. “An overview of gradient descent optimization Algorithms”. arXiv 2017

Momentum of Gradient
Updating with gradient momentum

SGD  with and without Momentum [1]
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Optimization: Adam Optimizer
Adam: Adaptive Moment Estimation [4]

[4] Kingma and Ba. “Adam: A Method for Stochastic Optimization”.  ICLR 2015
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Optimization: Adam Optimizer
Adam: Adaptive Moment Estimation [4]

[4] Kingma and Ba. “Adam: A Method for Stochastic Optimization”.  ICLR 2015

Hyperparameters that you can/should tune

Initializations
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Optimization: Adam Optimizer
Adam: Adaptive Moment Estimation [4]

[4] Kingma and Ba. “Adam: A Method for Stochastic Optimization”.  ICLR 2015

Hyperparameters that you can/should tune

Initializations

Standard back-propagation for raw gradients
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Optimization: Adam Optimizer
Adam: Adaptive Moment Estimation [4]

[4] Kingma and Ba. “Adam: A Method for Stochastic Optimization”.  ICLR 2015

Hyperparameters that you can/should tune

Initializations

Standard back-propagation for raw gradients

 Get 1st and 2nd order momentum of gradient
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Optimization: Adam Optimizer
Adam: Adaptive Moment Estimation [4]

[4] Kingma and Ba. “Adam: A Method for Stochastic Optimization”.  ICLR 2015

Hyperparameters that you can/should tune

Initializations

Standard back-propagation for raw gradients

 Get 1st and 2nd order momentum of gradient

 Correct momentum bias
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Optimization: Adam Optimizer
Adam: Adaptive Moment Estimation [4]

[4] Kingma and Ba. “Adam: A Method for Stochastic Optimization”.  ICLR 2015

Hyperparameters that you can/should tune

Initializations

Standard back-propagation for raw gradients

 Get 1st and 2nd order momentum of gradient

 Correct momentum bias

Update by 1st order momentum

Dynamic per-parameter step size by 2nd order momentum
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Optimization: Illustrations

[1] Sebastian Ruder. “An overview of gradient descent optimization Algorithms”. arXiv 2017

SGD optimization on loss surface contours [1] SGD optimization on saddle point [1]
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Optimization: Extensions of Adams
Adam is the go-to optimizer for deep learning now
● Combines two effective idea: momentum and dynamic learning rates
● Works very well in a large range of network work architectures and tasks
● Many of LLMs are pretrained using Adam or its extensions. (Almost all common ones.)
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Optimization: Extensions of Adams
Adam is the go-to optimizer for deep learning now
● Combines two effective idea: momentum and dynamic learning rates
● Works very well in a large range of network work architectures and tasks
● Many of LLMs are pretrained using Adam or its extensions. (Almost all common ones.)

Notable Extensions:
● Reducing the memory footprint of momentum states: 

○ AdaFactor
○ 8-Bit Adam

● Better warmup optimizer stage: 
○ RAdam

● More information in dynamic learning rate: 
○ AdamSAGE (Sensitivity)
○ Sophia (2nd order optimizer approximation)
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Outline
Optimization
● Optimization Basics
● Numerical Types

Parallel Training
● Data Parallelism
● Pipeline Parallelism
● Tensor Parallelism
● Combination of Combination
● ZeRO Optimizer
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Numerical Types: Basic Types
Floating point formats supported by acceleration hardware

● BF16 is supported on TPU before LLM (2019 or earlier)
● FP32 and FP16 was the only option before A100. BF16 was not supported at hardware level
● BF16 was first supported in GPUs around 2021

Floating Point Formats [5]

[5] https://cloud.google.com/blog/products/ai-machine-learning/bfloat16-the-secret-to-high-performance-on-cloud-tpus 
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Numerical Types: Neural Network Preferences
Neural networks prefer bigger range than better precision

● Many computation needs bigger range than FP16

Histogram of gradient values in a FP32 training [6]

[6] Narang et al. “Mixed Precision Training ”. ICLR 2018
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Numerical Types: Mixed Precision Training
Using different numerical types at different part of the training process
● Parameters, activations, and gradients often use FP16
● Optimizer states often needs FP32

Maintaining main copies of FP32 for calculations
Dynamically scaling up loss to fit gradients etc. in FP16 range

[6] Narang et al. “Mixed Precision Training ”. ICLR 2018
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Numerical Types: Mixed Precision Training
Using different numerical types at different part of the training process
● Parameters, activations, and gradients often use FP16
● Optimizer states often needs FP32

Maintaining main copies of FP32 for calculations
Dynamically scaling up loss to fit gradients etc. in FP16 range

[6] Narang et al. “Mixed Precision Training ”. ICLR 2018

An Example Mixed Precision Training Set up [6]
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Numerical Types: BF16
BF16 is the preferred numerical type on A100 and H100

● Same range as FP32: eliminated the needs for mixed precision training while being way more stable
● Coarse precision: mostly fine, only a few places in neural network need more fine-grained precision

Floating Point Formats [5]

[5] https://cloud.google.com/blog/products/ai-machine-learning/bfloat16-the-secret-to-high-performance-on-cloud-tpus 

Coarse Precision
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Outline

Parallel Training

● Data Parallelism

● Pipeline Parallelism

● Tensor Parallelism

● Combination of Parallelism

● ZeRO Optimizer
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Parallel Training: Overview

●  
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Parallel Training: Data Parallelism

Transformer 
Layer

Transformer 
Layer

 

  

Forward Pass

Backward 
Pass

GPU 1 GPU 2 GPU 3

Transformer 
Layer

Transformer 
Layer

 

  

Transformer 
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Transformer 
Layer

 

  

Split training data batch into different GPUs
• Each GPU maintains its own copy of model and optimizer
• Each GPU gets a different local data batch, calculates its gradients
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Parallel Training: Data Parallelism

Transformer 
Layer

Transformer 
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All Gather 

Global Gradients:

Split training data batch into different GPUs
• Each GPU maintains its own copy of model and optimizer
• Each GPU gets a different local data batch, calculates its gradients
• Gather local gradients together to each GPU for global updates
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Parallel Training: Data Parallelism
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All Gather 

Global Gradients:

Split training data batch into different GPUs
• Each GPU maintains its own copy of model and optimizer
• Each GPU gets a different local data batch, calculates its gradients
• Gather local gradients together to each GPU for global updates

Communication:
• The full gradient tensor 

between every pair of GPUs, at 
each training batch.

• Not an issue between GPUs in 
the same machine or 
machines with infinity band

• Will need work around without 
fast cross-GPU connection
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LLM size grew quickly and passed the limit of single GPU memory

Solution: Split network parameters (thus their gradients and corresponding optimizer states) to different GPUs

Parallel Training: Model Parallelism

Cost of 10B 
Model

Parameter Bytes 20GB
Gradient Bytes 20GB
Optimizer State: 1st Order 
Momentum 20GB
Optimizer State: 2nd Order 
Momentum 20GB
Total Per Model Instance 80GB
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Parallel Training: Model Parallelism

Transformer Layer

Transformer Layer

 

  

Pipeline Parallelism
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Split by Layers

Transformer Layer
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Tensor Parallelism

GPU 1 GPU 2

Split Tensors

Two ways of splitting network parameters
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Split network by layers, aligning devices by layer order to a pipeline, and pass data through devices  [7]

Parallel Training: Pipeline Parallelism

[7] Huang et al. “GPipe: Easy Scaling with Micro-Batch Pipeline Parallelism”. NeurIPS 2019

Illustration of Pipeline Parallelism [7]

Transformer Layer

Transformer Layer

 

  

Pipeline Parallelism

GPU 1

GPU 2

Split by Layers
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Split network by layers, aligning devices by layer order to a pipeline, and pass data through devices  [7]

Parallel Training: Pipeline Parallelism

[7] Huang et al. “GPipe: Easy Scaling with Micro-Batch Pipeline Parallelism”. NeurIPS 2019

Illustration of Pipeline Parallelism [7]

Split batches for more 
fine-grained pipelines



39 CMU 11-667 Fall 2024CMU 11-667 Fall 202439 CMU 11-667 Fall 2024

Split network by layers, aligning devices by layer order to a pipeline, and pass data through devices  [7]

Parallel Training: Pipeline Parallelism

[7] Huang et al. “GPipe: Easy Scaling with Micro-Batch Pipeline Parallelism”. NeurIPS 2019

Illustration of Pipeline Parallelism [7]

Communication:
• Activations between nearby devices 

in forward pass
• Partial gradients between nearby 

devices in backward
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Split network by layers, aligning devices by layer order to a pipeline, and pass data through devices  [7]

Pros: Conceptually simple and not coupled with network architectures. All networks have multiple layers.
Cons: Waste of compute in the Bubble. Bubble gets bigger with more devices and bigger batches.

Parallel Training: Pipeline Parallelism

[7] Huang et al. “GPipe: Easy Scaling with Micro-Batch Pipeline Parallelism”. NeurIPS 2019

Illustration of Pipeline Parallelism [7]

Communication:
• Activations between nearby devices 

in forward pass
• Partial gradients between nearby 

devices in backward
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Outline

Parallel Training

● Data Parallelism

● Pipeline Parallelism

● Tensor Parallelism

● Combination of Parallelism

● ZeRO Optimizer
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Split the parameter tensors of network layers into different devices for parallel matrix operations

Parallel Training: Tensor Parallelism

Tensor Parallelism of MLP blocks and Self-attention Blocks [8]

[8] Shoeybi et al. “Megatron-LM: Training Multi-Billion Parameter Language Models Using Model Parallelism”. arXiv 2019  
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Split the parameter tensors of network layers into different devices for parallel matrix operations

Parallel Training: Tensor Parallelism

[8] Shoeybi et al. “Megatron-LM: Training Multi-Billion Parameter Language Models Using Model Parallelism”. arXiv 2019  

Tensor Parallelism of MLP blocks and Self-attention Blocks [8]
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Split the parameter tensors of network layers into different devices for parallel matrix operations

Pros: No bubble
Cons: Different blocks are better split differently, lots of customizations

Parallel Training: Tensor Parallelism

[8] Shoeybi et al. “Megatron-LM: Training Multi-Billion Parameter Language Models Using Model Parallelism”. arXiv 2019  

Tensor Parallelism of MLP blocks and Self-attention Blocks [8]
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Split the parameter tensors of network layers into different devices for parallel matrix operations

Parallel Training: Tensor Parallelism

Communication of Tensor Papalism for a Transformer Layer [8]

Communication:
• All-gather of partial activations and gradients for each split tensor

[8] Shoeybi et al. “Megatron-LM: Training Multi-Billion Parameter Language Models Using Model Parallelism”. arXiv 2019  
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Parallel Training: Combining Different Parallelism
Often data parallelism and model parallelism are used together.
• No need not to use data parallelism

Pipeline Parallelism and Tensor Parallelism can also be used together.

[9] Narayanan et al. “Efficient Large-Scale Language Model Training on GPU Clusters Using Megatron-LM”. SC 2021.

Combination of Tensor Parallelism and Pipeline Parallelism [9]
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Outline

Parallel Training

● Data Parallelism

● Pipeline Parallelism

● Tensor Parallelism

● Combination of Combination

● ZeRO Optimizer
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ZeRO: Redundancy in Data Parallelism
Majority of GPU memory consumption is on the optimization side: gradients and optimizer momentums

Cost of 10B 
Model

Parameter Bytes 20GB
Gradient Bytes 20GB
Optimizer State: 1st Order 
Momentum 20GB
Optimizer State: 2nd Order 
Momentum 20GB
Total Per Model Instance 80GB
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ZeRO: Reduce Memory Redundancy
ZeRO Optimizer: Split GPU memory consumption into multiple GPUs during data parallelism

[10] Rajbhandari et al. “ZeRO: Memory Optimizations Toward Training Trillion Parameter Models”. arXiv 2019.

ZeRO Optimizer Stages [10]

Stage 1: Split Optimizer States

Stage 2: +Split Gradients
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ZeRO: Redundancy in Data Parallelism
ZeRO Stage 1 and 2: reducing memory redundancy

Observation:
• In data parallelism, each 

device only has access to local 
gradient

• All gather operation required 
on all gradients anyway
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ZeRO: Redundancy in Data Parallelism
An example way to implement ZeRO Stage 1

Transformer Layer

Transformer Layer

 

  

Forward Pass

Backward Pass

Transformer Layer

Transformer Layer

 

  

Transformer Layer

Transformer Layer

 

  

All Gather 

Sharded 1st Momentum   

GPU 1 GPU 2 GPU 3

 

   Sharded 2nd Momentum

Adam Parameter Updates
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ZeRO: Reduce Memory Redundancy
ZeRO Optimizer: Split GPU memory consumption into multiple GPUs during data parallelism

[10] Rajbhandari et al. “ZeRO: Memory Optimizations Toward Training Trillion Parameter Models”. arXiv 2019.

ZeRO Optimizer Stages [10]

Stage 1: Split Optimizer States

Stage 2: +Split Gradients

Communication

Free ride with data parallelism

Free ride with data parallelism



55 CMU 11-667 Fall 2024CMU 11-667 Fall 202455 CMU 11-667 Fall 2024

ZeRO Optimizer: Split GPU memory consumption into multiple GPUs during data parallelism

ZeRO: Reduce Memory Redundancy

[10] Rajbhandari et al. “ZeRO: Memory Optimizations Toward Training Trillion Parameter Models”. arXiv 2019.

ZeRO Optimizer Stages [10]

Stage 1: Split Optimizer States

Stage 2: +Split Gradients

Stage 3: +Split Parameters

Communication

Free ride with data parallelism

Free ride with data parallelism
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ZeRO: Redundancy in Data Parallelism
Sharding parameters and passing them when needed

Transformer Layer

Transformer Layer

 

  

Forward Pass

Backward Pass

Transformer Layer

Transformer Layer

 

  

Transformer Layer

Transformer Layer

 

  

All Gather 

Sharded 1st Momentum   

GPU 1 GPU 2 GPU 3

 

   Sharded 2nd Momentum

Adam Parameter Updates



57 CMU 11-667 Fall 2024CMU 11-667 Fall 202457 CMU 11-667 Fall 2024

ZeRO: Reduce Memory Redundancy
ZeRO Optimizer: Split GPU memory consumption into multiple GPUs during data parallelism

Pros: Stage 1 and 2 free ride with data parallelism with huge GPU memory savings
Cons: Open-source support not as good
Notes: Stage 3 is different with tensor parallelism. It passes parameters when needed but still performs 
computations of the full layer/network in one GPU. It is data parallelism with GPU memory sharding

[10] Rajbhandari et al. “ZeRO: Memory Optimizations Toward Training Trillion Parameter Models”. arXiv 2019.

ZeRO Optimizer Stages [10]

Stage 1: Split Optimizer States

Stage 2: +Split Gradients

Stage 3: +Split Parameters

Communication

Free ride with data parallelism

Free ride with data parallelism

All-gather parameters 
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A peek into real large scale 
pretraining workflow

Lots of first hand information released through the FAIR OPT pretraining run:

https://github.com/facebookresearch/metaseq/tree/main/projects/OPT/chronicles
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Background

A group of researchers and engineers are tasked with the goal of pretraining a large-scale model like GPT-3

● 1024 A100 80GBs to use. Yes!

Constraints:

● Task given at around Beginning of Nov 2021

● Goal is to pretrain a 175 Billion scale model by end of the year

○ Which at minimum require 33 days on 1K A100s

● With no previous experience on large scale pretraining at all
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Challenge #1: Many Research Work Don’t Scale

Hope: We started with high hopes that all our research improvements at Small will give us a better GPT

https://github.com/facebookresearch/metaseq/blob/main/projects/OPT/chronicles/10_percent_update.md
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Challenge #1: Many Research Work Don’t Scale

Reality: Short timeline, Big money on the line, Nothing too fancy

https://github.com/facebookresearch/metaseq/blob/main/projects/OPT/chronicles/10_percent_update.md
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Challenge #2: Hardware Failures

GPU machines are not very reliable. With 1024 A100s, it is guaranteed to have bad nodes.

https://github.com/facebookresearch/metaseq/blob/main/projects/OPT/chronicles/27_percent_update.md
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Challenge #2: Hardware Failures

Solution? Hopefully better tooling in the future, but right now:

https://github.com/facebookresearch/metaseq/blob/main/projects/OPT/chronicles/27_percent_update.md
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Challenge #2: Hardware Failures

Forming an on-call group to watch OPT training

Alchemy Furnace of 
the LLM Era

We Watching LLM 
Training
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Challenge #3: Optimization Stability

Lots of optimization stability issues:

● Loss explodes, gradients overflows/underflows, training stagers…
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Challenge #3: Optimization Stability
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Challenge #3: Optimization Stability
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Challenge #3: Optimization Stability
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The Importance of Scaling Law

Essential to determine what to do at large scale using observations at smaller scale
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Final Remarks from OPT
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Other Notable Literatures in Scaling Up

Different configurations of layer normalization: pre layernorm, post layernorm and their combination

● Xiong et al. “On Layer Normalization in the Transformer Architecture”. ICML 2020

● Zhang and Sennrich. “Root Mean Square Layer Normalization”. NeurIPS 2019

Position embeddings for longer contexts and expressiveness

● Su et al. “Roformer: Enhanced transformer with rotary position embedding.” arXiv 2021

Stability improvement from adaptive initialization

● Liu et al. “Understanding the Difficulty of Training Transformers”. EMNLP 2020


