. Please download and install the Slido o
Slldo app on all computers you use ~n‘

Audience Q&A

@ Start presenting to display the audience questions on this slide.

Announcements

Carnegie
Mellon
University

Scaling Up LLM Pretraining:
Parallel Training

Large Language Models: Methods and Applications

Daphne Ippolito and Chenyan Xiong

I 7 7
3 CMU11-667Fall

Learning Objectives

Optimizer
e Understand various standard optimization methods used for LLM pretraining

e Understand the differences of different numerical types and their usage

Parallel Training
e Understand the standard parallel training methods in LLM pretraining

e Able to implement basic parallel training methods for pretraining (HW5)
e Understand the trade-offs introduced in each parallel training methods

LI I I I Z

CMU 11-667 Fall 2

Outline

Optimization
e Optimization Basics
e Numerical Types

Parallel Training

e Data Parallelism
Pipeline Parallelism
Tensor Parallelism
Combination of Parallelism
/eRO Optimizer

CMU 11-667 Fal o

Optimization: Recap of Stochastic Gradient Descent

In deep learning, mini-batch learning is the norm and Stochastic Gradient Descent (SGD) is the basis
optimizer

Compared to classic convex optimization:
e Fach step only uses a small sub sample of data: stochastic sampling
e Non-convex optimization has many local optimal with different effectiveness

uder. “An overview of gradient descent optimization Algorithms”. arXiv 2017 C M

Optimization: Recap of Stochastic Gradient Descent

In deep learning, mini-batch learning is the norm and Stochastic Gradient Descent (SGD) is the basis
optimizer

Challenge: How to select the right step size?
e Different parameters have different behaviors:
o norm, sensitivity, influence to optimization process, etc.
o have different preferences on step size
e No way to manually tune step size per parameter
o Millions or billions of hyperparameters to tune SGD on two parameter loss contours [1}

CMU 11 667 FaH

[1] Sebastian Ruder. “An overview of gradient descent optimization Algorithms”. arXiv 2017

Optimization: Challenge of SGD

In deep learning, mini-batch learning is the norm and Stochastic Gradient Descent (SGD) is the basis
optimizer

Challenge: How to select the right step size?
—Solution: Dynamic learning rate per parameter, Adaptive gradient methods (AdaGrad [2])

Reweight per parameter step size by
its accumulated past norm

CM

[2] Duchi et al. “Adaptive Subgradient Methods for Online Learning and Stochastic Optimization”. JMLR 2011

Optimization: Challenge of SGD

Iredeep learning, mini-batch learning is the norm and Stochastic Gradient Descent (SGD) is the basis
optimizer

Challenge: How to select the right step size?
—Solution: Dynamic learning rate per parameter. Adaptive gradient methods (AdaGrad [2])

Reweight per parameter step size by
its accumulated past norm

e The more a parameter has been updated previously ’Zl 192 1, the less its step size
e Sparse features with fewer past gradients / t_,97 | getboosted

CMU 11 667 FaH

[2] Duchi et al. “Adaptive Subgradient Methods for Online Learning and Stochastic O ation”. JMLR 2011

Optimization: Challenge of SGD

In deep learning, mini-batch learning is the norm and Stochastic Gradient Descent (SGD) is the basis
optimizer

Challenge: Local updates
e Only uses information from current mini-batch
o Can easily stuck in local optima

4 L7 -,
7 7 A

MU11-667Fall’20

[3] https://towardsdatascience.com/a-visual-explanation-of-gradient-descent-methods-momentum-adagrad-rmsprop-adam-f898b102325¢

Optimization: Challenge of SGD

Iredeep learning, mini-batch learning is the norm and Stochastic Gradient Descent (SGD) is the basis
optimizer

Challenge: Local updates
— Solution: Momentum [4]
Momentum of Gradient

Updating with gradient momentum

[1] Sebastian “ i radient descen imizati i ", arXiv CMU 11-667 FaH

Optimization: Challenge of SGD

Iredeep learning, mini-batch learning is the norm and Stochastic Gradient Descent (SGD) is the basis
optimizer

Challenge: Local updates
— Solution: Momentum [4]

Momentum of Gradient

Updating with gradient momentum

U= ==

(a) SGD without momentum (b) SGD with momentum

SGD with and without Momentum [1]

Optimization: Adam Optimizer

Adam: Adaptive Moment Estimation [4]

Algorithm 1: Adam, our proposed algorithm for stochastic optimization. See section 2 for details,
and for a slightly more efficient (but less clear) order of computation. g7 indicates the elementwise
square g; © g¢. Good default settings for the tested machine learning problems are @ = 0.001,
B1 = 0.9, B2 = 0.999 and € = 10~8. All operations on vectors are element-wise. With 3% and /3%
we denote (5 and (35 to the power .
Require: «: Stepsize
Require: (31, 3> € [0,1): Exponential decay rates for the moment estimates
Require: f(6): Stochastic objective function with parameters 6
Require: 6: Initial parameter vector
mg < 0 (Initialize 1% moment vector)
vo < 0 (Initialize 2™ moment vector)
t < 0 (Initialize timestep)
while 6, not converged do
t—t+1
gt < Vo fi(0:—1) (Get gradients w.r.t. stochastic objective at timestep t)
my < B1-my—1 + (1 — B1) - g« (Update biased first moment estimate)
v < B2 w1 + (1 — B2) - g7 (Update biased second raw moment estimate)
my < my/(1 —) (Compute bias-corrected first moment estimate)
0y < vy /(1 — %) (Compute bias-corrected second raw moment estimate)
Or < 0r—1 —a-my/ (\/@—t + €) (Update parameters)
end while
return 6; (Resulting parameters)

[4] Kingma and Ba. “Adam: A Method for Stochastic Optimization”. ICLR 2015

11 667 FaH 20

Optimization: Adam Optimizer

Adam: Adaptive Moment Estimation [4]

Algorithm 1: Adam, our proposed algorithm for stochastic optimization. See section 2 for details,
and for a slightly more efficient (but less clear) order of computation. g7 indicates the elementwise
square g; © g¢. Good default settings for the tested machine learning problems are @ = 0.001,
B1 = 0.9, B2 = 0.999 and € = 10~8. All operations on vectors are element-wise. With 3% and /3%
we denote (5 and (35 to the power .

Require: «: Stepsize

Require: (31, 3> € [0,1): Exponential decay rates for the moment estimates]. Hyperparameters that you can/should tune
Require: f(6): Stochastic objective function with parameters 6

Require: 6: Initial parameter vector

mg < 0 (Initialize 1% moment vector) Initializati
vo < 0 (Initialize 2™ moment vector) nitializations
t < 0 (Initialize timestep)

while 6, not converged do
t—t+1
gt < Vo fi(0:—1) (Get gradients w.r.t. stochastic objective at timestep t)
my < B1-my—1 + (1 — B1) - g« (Update biased first moment estimate)
v < B2 w1 + (1 — B2) - g7 (Update biased second raw moment estimate)
my < my/(1 —) (Compute bias-corrected first moment estimate)
0y < vy /(1 — %) (Compute bias-corrected second raw moment estimate)
Or < 0r—1 —a-my/ (\/ﬁ—t + €) (Update parameters)
end while
return 6; (Resulting parameters)

[4] Kingma and Ba. “Adam: A Method for Stochastic Optimization”. ICLR 2015

11 667 FaH 20

Optimization: Adam Optimizer

Adam: Adaptive Moment Estimation [4]

Algorithm 1: Adam, our proposed algorithm for stochastic optimization. See section 2 for details,
and for a slightly more efficient (but less clear) order of computation. g7 indicates the elementwise
square g; © g;. Good default settings for the tested machine learning problems are = 0.001,
B1 = 0.9, B2 = 0.999 and € = 10~8. All operations on vectors are element-wise. With 3% and /3%
we denote (5 and (35 to the power .

Require: «: Stepsize

Require: (31, 3> € [0,1): Exponential decay rates for the moment estimates]. Hyperparameters that you can/should tune
Require: f(6): Stochastic objective function with parameters 6

Require: 6: Initial parameter vector

mg < 0 (Initialize 1% moment vector) Initializati
vo < 0 (Initialize 2™ moment vector) nitializations
t < 0 (Initialize timestep)

while 6, not converged do
t+—t+1
gt < Vo fi(0:—1) (Get gradients w.r.t. stochastic objective at timestep t)
my < D1 - Mi—1 + (I — P1) - gz (Update biased Hrst moment estumate)
v < B2 w1 + (1 — B2) - g7 (Update biased second raw moment estimate)
my < my/(1 —) (Compute bias-corrected first moment estimate)
0y < vy /(1 — %) (Compute bias-corrected second raw moment estimate)
Or < 0r—1 —a-my/ (\/_5; + €) (Update parameters)
end while
return 6; (Resulting parameters)

Standard back-propagation for raw gradients

[4] Kingma and Ba. “Adam: A Method for Stochastic Optimization”. ICLR 2015

11 667 FaH 20

Optimization: Adam Optimizer

Adam: Adaptive Moment Estimation [4]

Algorithm 1: Adam, our proposed algorithm for stochastic optimization. See section 2 for details,

and for a slightly more efficient (but less clear) order of computation. g7 indicates the elementwise

square g; © g;. Good default settings for the tested machine learning problems are = 0.001,

B1 = 0.9, B2 = 0.999 and € = 10~8. All operations on vectors are element-wise. With 3% and /3%

we denote (5 and (35 to the power .

Require: «: Stepsize

Require: (31, 3> € [0,1): Exponential decay rates for the moment estimates]. Hyperparameters that you can/should tune
Require: f(6): Stochastic objective function with parameters 6

Require: 6: Initial parameter vector

mg < 0 (Initialize 1% moment vector) Initializati
vo < 0 (Initialize 2™ moment vector) nitializations
t < 0 (Initialize timestep)

while 6, not converged do
t+—t+1
gt < Vo fi(0:—1) (Get gradients w.r.t. stochastic objective at timestep t)
my < B1 - Mi—1 + (L — P1) - g (Update biased NIst moment esumate)
v < Bo w1 + (1 — B2) - g7 (Update biased second raw moment estimate)
my < my /(1 — 57) (Compute bias-corrected hirst moment estimate)
0y < vy /(1 — %) (Compute bias-corrected second raw moment estimate)
Or < 0r—1 —a-my/ (\/_5; + €) (Update parameters)
end while
return 6; (Resulting parameters)

Standard back-propagation for raw gradients

Get 1° and 2" order momentum of gradient

[4] Kingma and Ba. “Adam: A Method for Stochastic Optimization”. ICLR 2015

Optimization: Adam Optimizer

Adam: Adaptive Moment Estimation [4]

Algorithm 1: Adam, our proposed algorithm for stochastic optimization. See section 2 for details,

and for a slightly more efficient (but less clear) order of computation. g7 indicates the elementwise

square g; © g;. Good default settings for the tested machine learning problems are = 0.001,

B1 = 0.9, B2 = 0.999 and € = 10~8. All operations on vectors are element-wise. With 3% and /3%

we denote (5 and (35 to the power .

Require: «: Stepsize

Require: (31, 3> € [0,1): Exponential decay rates for the moment estimates]. Hyperparameters that you can/should tune
Require: f(6): Stochastic objective function with parameters 6

Require: 6: Initial parameter vector

mg < 0 (Initialize 1%* moment vector) Initializati
vo < 0 (Initialize 2™ moment vector) nitializations
t <— 0 (Initialize timestep)

while 6, not converged do
t+—1t+1
gt < Vo fi(0:—1) (Get gradients w.r.t. stochastic objective at timestep t)
my¢ < P1 - mi—1 T (L — P1) - gr (Update biased Hrst moment estmate)
v < Bo w1 + (1 — B2) - g7 (Update biased second raw moment estimate)
my < my /(1 — 57) (Compute bias-corrected hirst moment estimate)
vy < vy /(1 — %) (Compute bias-corrected second raw moment estimate)
Or < 0r—1 —a-my/ (\/5_15 + €) (Update parameters)
end while
return 6; (Resulting parameters)

Standard back-propagation for raw gradients

Get 1° and 2" order momentum of gradient

Correct momentum bias

[4] Kingma and Ba. “Adam: A Method for Stochastic Optimization”. ICLR 2015

11-667 Fail 20

Optimization: Adam Optimizer

Adam: Adaptive Moment Estimation [4]

Algorithm 1: Adam, our proposed algorithm for stochastic optimization. See section 2 for details,
and for a slightly more efficient (but less clear) order of computation. g7 indicates the elementwise
square g; © g;. Good default settings for the tested machine learning problems are = 0.001,
B1 = 0.9, B2 = 0.999 and € = 10~8. All operations on vectors are element-wise. With 3% and /3%
we denote (5 and (35 to the power .

Require: «: Stepsize

Require: (31, 3> € [0,1): Exponential decay rates for the moment estimates]. Hyperparameters that you can/should tune
Require: f(6): Stochastic objective function with parameters 6

Require: 6: Initial parameter vector

mg < 0 (Initialize 1%* moment vector) Initializati
vo < 0 (Initialize 2™ moment vector) nitializations
t <— 0 (Initialize timestep)

while 6, not converged do
t—t+1
gt < Vo fi(0:—1) (Get gradients w.r.t. stochastic objective at timestep t)
my¢ < P1 - mi—1 T (L — P1) - gr (Update biased Hrst moment estmate)
v < Bo w1 + (1 — B2) - g7 (Update biased second raw moment estimate)
my < my /(1 — 57) (Compute bias-corrected hirst moment estimate)
vy < vy /(1 — %) (Compute bias-corrected second raw moment estimate)
Or < 0r1 —a-my/ (\/5_15 + €) (Update parameters)
end while
return 6; (Resultinggparameters)

Standard back-propagation for raw gradients

Get 1° and 2" order momentum of gradient

Correct momentum bias

Update by 1 order momentum

[4] Kingma and Ba. “Adam: A Method for Stochastic Optimization”. ICLR 2015

Optimization: lllustrations

— SGD
=al - —— Momentum
Momentum [— NAG
i E - Adagrad
Ajangd 4% Adadelta
Adadelta 4 gy Rmsprop
Rmsprop i Utety

N

= il
KRN
o

1.0

SGD optimization on loss surface contours [1] SGD optimization on saddle point [1]

J s, 7 27 77
20 L s s et e
[1] Sebastian Ruder. “An overview of gradient descent optimization Algorithms”. arXiv 2017

CMU11-667Fall 2024

Optimization: Extensions of Adams

Adam is the go-to optimizer for deep learning now
e (Combines two effective idea: momentum and dynamic learning rates
e Works very well in a large range of network work architectures and tasks
e Many of LLMs are pretrained using Adam or its extensions. (Almost all common ones.)

CM

Optimization: Extensions of Adams

Adam is the go-to optimizer for deep learning now
e (Combines two effective idea: momentum and dynamic learning rates
e Works very well in a large range of network work architectures and tasks
e Many of LLMs are pretrained using Adam or its extensions. (Almost all common ones.)
Notable Extensions:
e Reducing the memory footprint of momentum states:
o AdaFactor

o 8-Bit Adam
e Better warmup optimizer stage:
o RAdam

e More information in dynamic learning rate:
o AdamSAGE (Sensitivity)
o Sophia (2" order optimizer approximation)

CMU 11 667 FaH

. Please download and install the Slido o
Slldo app on all computers you use ~n‘

Audience Q&A

@ Start presenting to display the audience questions on this slide.

Outline

Optimization

Optimization Basics
Numerical Types

Parallel Training

Data Parallelism

Pipeline Parallelism

Tensor Parallelism
Combination of Combination
/eR0O Optimizer

Numerical Types: Basic Types

Floating point formats supported by acceleration hardware

(a) fp32: Single-precision IEEE Floating Point Format Range: ~1e %% to ~3e%

Exponent: 8 bits - Mantissa (Significand): 23 bits)
[s [TV VO I I T I

(b) fp16: Half-precision IEEE Floating Point Format Range: ~5.96e® to 65504

_Exponent; S bits _ . Mantissa (Significand):. 10 bits
c:eceuuuuuuuuun

(c) bfloat16: Brain Floating Point Format Range: ~1e"** to ~3e*

Exponent: 8 bits Mantissa (Significand): 7 bits
Esssezssuuuuuuu

Floating Point Formats [5]

e BF16is supported on TPU before LLM (2019 or earlier)
e FP32 and FP16 was the only option before A100. BF16 was not supported at hardware level
e BF16 was first supported in GPUs around 2021

577, i E A 7
L e

[5] https://cloud.google.com/blog/products/ai-machine-learnin oat16-the-secret-to-high-performance-on-cloud-tpus 7z Z -
CMU11-667Fall 2024

e,

Numerical Types: Neural Network Preferences

Neural networks prefer bigger range than better precision

n FP16 FP16 deno: orms

64 FP16 Representable range
32
16
]
4
2
1
73
14
1/8
116
132
1/64
1128
1/256
U512

log,(magnitude)

Percentage of all activation gradient values

Histogram of gradient values in a FP32 training [6]

e Many computation needs bigger range than FP16

[6] Narang et al. “Mi isi ining ”. ICLR 2018

Numerical Types: Mixed Precision Training

Using different numerical types at different part of the training process
e Parameters, activations, and gradients often use FP16
e Optimizer states often needs FP32

Maintaining main copies of FP32 for calculations

Dynamically scaling up loss to fit gradients etc. in FP16 range

[6] Narang et al. “Mixed Pre ng ”. ICLR 2018

CM

Numerical Types: Mixed Precision Training

Using different numerical types at different part of the training process
e Parameters, activations, and gradients often use FP16
e Optimizer states often needs FP32

Maintaining main copies of FP32 for calculations

Dynamically scaling up loss to fit gradients etc. in FP16 range

) Fi6 (—
float2half s FWD 55 Activations
Activations ——

F16 .
e F16 le——Weights
Activation Grad «—— BWD-Actv F16 |»g ;
je——Activation Grad

(F16 —
i F16 «— Activations

Weight Grad BWD-Weight | 1 Wk
Je—Activation Grad

F3

Master-Weights (F32) E Weight Update EL Updated Master-Weights

An Example Mixed Precision Training Set up [6]

ion Training ”. ICLR 2018

7
(07200 s P r e er e s 2w s

1667 Fall 2024

Numerical Types: BF16

BF16 is the preferred numerical type on A100 and H100

(a) fp32: Single-precision IEEE Floating Point Format Range: ~1e %% to ~3e%

Exponent: 8 bits - Mantissa (Significand): 23 bits)
-E E E E E € E € EMIEMME MM USRS SRR SREE SR SRR SN SARE SARE SRRE ST AT DA CRRE N TN

(b) fp16: Half-precision IEEE Floating Point Format Range: ~5.96e® to 65504

_Exponent; S bits _ . Mantissa (Significand): 10 bits
c:eceuuuuuuuunn

(c) bfloat16: Brain Floating Point Format Range: ~1e7* to ~3e*

Exponent: 8 bits Mantissa (Significand): 7 bits
Esesesssuuuuuuu

Coarse Precision
Floating Point Formats [5]

e Same range as FP32: eliminated the needs for mixed precision training while being way more stable
e (Coarse precision: mostly fine, only a few places in neural network need more fine-grained precision

[5] https://cloud.google.com/blog/products/ai-machine-learning/bfloat16-the-secret-to-high-performance-on-cloud-tpus

. Please download and install the Slido o
Slldo app on all computers you use ~n‘

Audience Q&A

@ Start presenting to display the audience questions on this slide.

Outline

Parallel Training

Data Parallelism
Pipeline Parallelism
Tensor Parallelism

Combination of Parallelism

ZeRO Optimizer

CM

777 I 7777 AR AR FFF 77
L ELAIF T

U11-667Fall 2024~

Parallel Training: Overview

Agscale grows, training with one GPU is not enough
e There are many ways to improve efficiency on single-GPU training
o Checkpointing: moving part of the operations to CPU memory
o Quantizing different part of the optimization to reduce GPU memory cost
e [Eventually more FLOPs are needed

Different setups of parallel training:
e When model training can fit into single-GPU
—Data parallelism
e When model training cannot fit into single-GPU
— Model parallelism: pipeline or tensor

Parallel Training: Data Parallelism

Split training data batch into different GPUs
« Each GPU maintains its own copy of model and optimizer
« Each GPU gets a different local data batch, calculates its gradients

GPU1

GPU 2 GPU 3
Forward Pass A L v Y
Backward 4
Pass A Y A Y A Y
Y A Y A ¥

CMU 11-667 Fall

Parallel Training: Data Parallelism

Split training data batch into different GPUs

« Each GPU maintains its own copy of model and optimizer

« Each GPU gets a different local data batch, calculates its gradients
» Gather local gradients together to each GPU for global updates

GPU 1 GPU 2 GPU 3
Forward Pass A A L 7 A L 7 A L Z
Backward Pass ¥ i ¥ i ¥ A ¥
All Gather v
i y i y i y

Global Gradients:

CMU 11-667 Fall

Parallel Training: Data Parallelism

Split training data batch into different GPUs

« Each GPU maintains its own copy of model and optimizer

« Each GPU gets a different local data batch, calculates its gradients
» Gather local gradients together to each GPU for global updates

GPU1 GPU 2 GPU 3

Communication:

Forward Pass A A L 7 A v A v * The full gradient tensor
between every pair of GPUs, at
each training batch.

Backward Pass y A v A v A v « Not an issue between GPUs in
the same machine or
All Gather v machines with infinity band
« Will need work around without
4 V 4 V 4 V fast cross-GPU connection

Global Gradients:

Parallel Training: Model Parallelism

LLM size grew quickly and passed the limit of single GPU memory

Cost of 10B
Model
Parameter Bytes 20GB
Gradient Bytes 20GB
Optimizer State: 1st Order
Momentum 20GB
Optimizer Statg: 2RecQEd@Btion of Training Solely with BF16 (Ideal case) of a model sized W
Momentum 20GB
Total Per Model Instance 80GB

Solution: Split network parameters (thus their gradients and corresponding optimizer states) to different GPUs

CMU 1

Parallel Training: Model Parallelism

Two ways of splitting network parameters

Pipeline Parallelism Tensor Parallelism

A L/ GPU 1 A L 2 GPU 2
GPU 2

= ¥ B v
GPU 1

3 v 3 v

Split by Layers

Split Tensors

CMU 1

Parallel Training: Pipeline Parallelism

Split network by layers, aligning devices by layer order to a pipeline, and pass data through devices [7]

Pipeline Parallelism

Loss

il WY
Device 3 F. B.

] ;) v
Device 2 F. B. GPU 2

) !
Device 1 F1 B1

; l A ¥
Device 0 F, B. GPU 1

S S

Gradients

(a)

Illustration of Pipeline Parallelism [7] split by Layers

[7] Huang et al. “GPipe: Easy Scaling with Micro-Batch Pipeline Parallelism”. NeurlPS 2019 CM U 1 1 667 Fa”

Parallel Training: Pipeline Parallelism

Split network by layers, aligning devices by layer order to a pipeline, and pass data through devices [7]

F. B. Update
Loss
/ \ Fo B0 Update
Device 3 F. B. Es B, Update
—t —r F. m B, | update Split batches for more
Device 2 F. B. fine-grained pipelines
t v (b)
Device 1 F1 B1 Fso | Fs1 | Fs2 | Fss| Bss | Bsz | Baas Bso Update
T l F20 | F21 | F22 | F2s B2s | B22 | Bas B2o Update
Device 0 Fs B.
Fio | Fi1 | F12 | F1s Bis | B1i2 | Bi1 | Bio Update
\ / Foo | Fo1 | Foz | Fos BUbee Bos Bo2 Bo. Boo | Update
Gradients
(a) (c)

Illustration of Pipeline Parallelism [7]

[7] Huang et al. “GPipe: Easy Scaling with Micro-Batch Pipeline Parallelism”. NeurlPS 2019

Parallel Training: Pipeline Parallelism

Split network by layers, aligning devices by layer order to a pipeline, and pass data through devices [7]

Loss

T T

Device 3 F. B.
_t ¥

Device 2 F. B.

t v
Device 1 F B.

f !
Device 0 F. B,

Y

Gradients
(a)

FU BO Update

Fa B. Update

F, B. Update

3 =
(b)

Fso | Fs1 | Fs2 | Fss| Bss | Bs2 | Bs1 | Bso Update

Fao | Fai | F22 | Faa B2s | B2z | B21 | Bzo Update

Fio | F11 | F12 | F1s Bis | Bz | Bi1 | Bro Update

Foo | Fo1 | Foz | Fos Bos | Boz | Bos | Boo | Update

(©)

Illustration of Pipeline Parallelism [7]

[7] Huang et al. “GPipe: Easy Scaling with Micro-Batch Pipeline Parallelism”. NeurlPS 2019

Communication:

« Activations between nearby devices
in forward pass

» Partial gradients between nearby
devices in backward

CMU11-667Fall 20

Parallel Training: Pipeline Parallelism

Split network by layers, aligning devices by layer order to a pipeline, and pass data through devices [7]

Device 3

Device 2

Device 1

Device 0

Loss
LT e
FS 83
L R

F. B.
t v
F. B.
t !

Gradients
(a)

N

FU BO Update

Fa B. Update

F, B. Update

3 =
(b)

Fso | Fs1 | Fs2 | Fss| Bss | Bs2 | Bs1 | Bso Update

Fao | Fai | F22 | Faa B2s | B2z | B21 | Bzo Update

Fio | F11 | F12 | F1s Bis | Bz | Bi1 | Bro Update

Foo | Fo1 | Foz | Fos Bos | Boz | Bos | Boo | Update

(©)

Illustration of Pipeline Parallelism [7]

Communication:

« Activations between nearby devices
in forward pass

» Partial gradients between nearby
devices in backward

Pros: Conceptually simple and not coupled with network architectures. All networks have multiple layers.

Cons: Waste of compute in the Bubble. Bubble gets bigger with more devices and bigger batches.

[7] Huang et al. “GPipe: Easy Scaling with Micro-Batch Pipeline Parallelism”. NeurlPS 2019

CMU 11-667 Fall 2024

. Please download and install the Slido o
Slldo app on all computers you use ~n‘

Audience Q&A

@ Start presenting to display the audience questions on this slide.

Outline

Parallel Training

e Data Parallelism
e Pipeline Parallelism
e Tensor Parallelism

e Combination of Parallelism

e /eRO Optimizer

) i AR 277 /
L ELAIF T

CMU11-667Fall 2024~

Parallel Training: Tensor Parallelism

Split the parameter tensors of network layers into different devices for parallel matrix operations

Tensor Parallelism of MLP blocks and Self-attention Blocks [8]

JiHH
; HiH 77
A

CMU11-667Fall 202

[8] Shoeybi et al. “Megatrot illion Parameter Language Models Using Model Parallelism”. arXiv 2019

Parallel Training: Tensor Parallelism

Split the parameter tensors of network layers into different devices for parallel matrix operations

y Y = Self-Attention(X) .)
// Y = GeLU(X A) o[V] ; / Z = Dropout(Y B) \
i -
I
| “|x|-Ca, g
{ =| X |=) Y1B; :?.1. Fl=8 Q®Q===~ YiB, :.,:.
i L =[] g o
i X|= - X|= ‘:§ = [
| -y 8§ .
: =X |= Y2B; m®wa ==| ¥2B, ¢|§|=>
i L =l m-cﬂ s
i

B
! 1
\ — \ B = [:| //
\\\ A [Aly A2] \ = (@1, @] & By »
T T e i =i % split attention heads — K = [K3, K] //
A W1, Vo _d

Tensor Parallelism of MLP blocks and Self-attention Blocks [8]

[8] Shoeybi et al. “Megatron-LM: Training Multi-Billion Parameter Language Models Using Model Parallelism”. arXiv 2019

Parallel Training: Tensor Parallelism

Split the parameter tensors of network layers into different devices for parallel matrix operations
F Y = Self-Attention(X) %

e e e e e e e /,_____________________\

4 Y = GeLU(XA) § [Z = Dropout(Y B)
[} —
I
| =T
{ =| X |=) Y1B; :?.1. Fl=8 Q®Q===~ YiB, :.,:.
| oo |8 i
i X|= - X|= ‘:§ = [
[= o =4
i = | X | Y,B. Qnﬂ a Y <= | v;B
[202 2 T 5By [=|Zs| =
= L =l m-cﬂ s
I
I

B
| 1
\ — \ B = [:| /
\\\ A [A17 A2] | = [leQZ] ; « 1 B2 4 //

T T e i =i ' split attention heads — K = [K1,K3] 4
- Vi, Vo] 5

Tensor Parallelism of MLP blocks and Self-attention Blocks [8]

Pros: No bubble
Cons: Different blocks are better split differently, lots of customizations

/ 52727, 777
L

[8] Shoeybi et al. “Megatron-LM: Traini i-Billion Parameter Language Models Using Model Parallelism”. arXiv 2019 CM U 1 1_667 Fa ” 202

Parallel Training: Tensor Parallelism

Split the parameter tensors of network layers into different devices for parallel matrix operations

AERRGRRSESR h y. ‘\\
| | | | f \
H - P RE ng ERRRERE
x =8 =3 68 [0 =3 ol g 28 e =<
>, == 1) O zZ | @ c o || |O
sl I8 B S S| il B S
3| ; 3| | |
i 1 | |
L | i | i -
{ Model | i Model |
_ Parallel __ Parallel
2 All-Reduce 2 All-Reduce
(forward + backward) (forward + backward)

Communication of Tensor Papalism for a Transformer Layer [8]

Communication:
» All-gather of partial activations and gradients for each split tensor

[8] Shoeybi et al. “Megatron-LM: Training Multi-Billion Parameter Language Models Using Model Parallelism”. arXiv 2019

CM

Parallel Training: Combining Different Parallelism

Often data parallelism and model parallelism are used together.

» No need not to use data parallelism

Pipeline Parallelism and Tensor Parallelism can also be used together.

Transformer Iayer #1

" — — ——-—-—-

———————————

,.__________. ,_______

Tensor MP partltlon #2

- - ~-~.—"'-—._—-.—-~._-\.’—-_"~-

Pipeline MP partition #1

_____.__.._,./

——

o

Transformer layer #2

___________\

1 ;-H '-:1 ”‘l

- ______=w ——________4 _.________-_/

Tensor MP partition #2 |

\—-~.N_——-~._,._’-~-_’-._,-~.

\ Pipeline MP partition #2

S = T T TS ,—-———————.—

EJ

e e e e

Combination of Tensor Parallelism and Pipeline Parallelism [9]

E “Efficient Large-Scale Language Model Trainin;

g on GPU Clusters Using Megatron-LM”. SC 2021.

. Please download and install the Slido o
Slldo app on all computers you use ~n‘

Audience Q&A

@ Start presenting to display the audience questions on this slide.

Outline

Parallel Training

e Data Parallelism
e Pipeline Parallelism
e Tensor Parallelism

e Combination of Combination

e ZeRO Optimizer

CM

7 17777
L

U11-667Fall 2024~

/eR0O: Redundancy in Data Parallelism

Majority of GPU memory consumption is on the optimization side: gradients and optimizer momentums

Cost of 10B
Model
Parameter Bytes 20GB
Gradient Bytes 20GB
Optimizer State: 1st Order
Momentum 20GB
Optimizer Statg:n2nd-QEd@Ftion of Training Solely with BF16 (Ideal case) of a model sized ¥
Momentum 20GB

Total Per Model Instance 80GB

/eR0O: Reduce Memory Redundancy

ZeR0O Optimizer: Split GPU memory consumption into multiple GPUs during data parallelism
gPUg gpu; 8PUN-1

Stage 1: Split Optimizer States

Stage 2: +Split Gradients

Parameters Gradients Optimizer States

ZeRO Optimizer Stages [10]

[10] Rajbhandari et al. “ZeRO: Memory Optimizations Toward Tr ion Parameter Models”. arXiv 2019.

/eR0O: Redundancy in Data Parallelism

ZeRO Stage 1 and 2: reducing memory redundancy

GPU 1 GPU 2 GPU 3
ForwardPass 1 ‘ { ! ‘ | { ! ‘ ‘) ! |
Backward Pass | 7 I i I i I
All Gather !

! ! !
BN EEeD Elien

Global Gradients:

Observation:

* In data parallelism, each
device only has access to local
gradient

+ All gather operation required
on all gradients anyway

/eR0O: Redundancy in Data Parallelism

An example way to implement ZeRO Stage 1

GPU1 GPU 2 GPU3
Forward Pass 4 4 * 4 * 4 *
Backward Pass * 4 * 4 * 4 *
All Gather *
S S ¥
L= 1
Sharded 1%t Momentum m(x,8,) | | m(x,0,) ! | m(x, 63) | I
1 1 11— 11—
I pr— —
Sharded 2" Momentum v(x,64) : j: v(x,0,) | | : v(x,05) : [] :

[—

/eR0O: Reduce Memory Redundancy

ZeR0O Optimizer: Split GPU memory consumption into multiple GPUs during data parallelism

gPUg gPyY; gPUN_¢
Communication
Stage 1: Split Optimizer States Free ride with data parallelism
Stage 2: +Split Gradients Free ride with data parallelism
Parameters Gradients Optimizer States

ZeRO Optimizer Stages [10]

T 7R AR AR FFF 77
L ELAIF T

U11-667Fall 2024~

[10] Rajbhandari et al. “ZeRO: Memory Optimizations Toward Training Trillion Parameter Models”. arXiv 2019. C M

/eR0O: Reduce Memory Redundancy

ZeR0O Optimizer: Split GPU memory consumption into multiple GPUs during data parallelism

gpU, gpy; 8PUN1 |
Communication
Stage 1: Split Optimizer States Free ride with data parallelism
Stage 2: +Split Gradients Free ride with data parallelism
Stage 3: +Split Parameters
Parameters Gradients Optimizer States

ZeRO Optimizer Stages [10]

[10] Rajbhandari et al. “ZeRO: Memory Optimizations Toward Traini

rillion Parameter Models”. arXiv 2019.

e
i L
L ZrI S

CMU 11-667 Fall 20

/eR0O: Redundancy in Data Parallelism

Sharding parameters and passing them when needed

GPU1 GPU 2 GPU 3
Forward Pass 4 A 17 A v A L 4
Backward Pass * 4 * 4 * 4 *
All Gather *
—5 L] A v
- 1
Sharded 1* Momentum m(x,0,) | 1 m(x, ;) : 1 m(x,63) ! 1
1 I —1 1=
nd 1 I
Sharded 2" Momentum v(x,0,) : j: v(x,0;) | || : v(x,03) | | | :

! L

/eR0O: Reduce Memory Redundancy

ZeR0O Optimizer: Split GPU memory consumption into multiple GPUs during data parallelism

gpu, gpy; 8PUn: |
Communication
Stage 1: Split Optimizer States Free ride with data parallelism
Stage 2: +Split Gradients Free ride with data parallelism
Stage 3: +Split Parameters All-gather parameters
Parameters Gradients Optimizer States

ZeRO Optimizer Stages [10]
Pros: Stage 1 and 2 free ride with data parallelism with huge GPU memory savings
Cons: Open-source support not as good

Notes: Stage 3 is different with tensor parallelism. It passes parameters when needed but still performs
computations of the full layer/network in one GPU. It is data parallelism with GPU memory sharding

/ 1177 e,
Z 771777 e 7/ /
L ELAIF T

U11-667Fall 2024~

[10] Rajbhandari et al. “ZeRO: Memory Optimizations Toward Training Trillion Parameter Models”. arXi

CM

. Please download and install the Slido o
Slldo app on all computers you use ~n‘

Audience Q&A

@ Start presenting to display the audience questions on this slide.

Carnegie
Mellon
University

A peekinto real large scale
pretraining workflow

Background

A group of researchers and engineers are tasked with the goal of pretraining a large-scale model like GPT-3
e 1024 A100 80GBs to use. Yes!

Constraints:
e Task given at around Beginning of Nov 2021
e (Goalisto pretrain a 175 Billion scale model by end of the year

o Which at minimum require 33 days on TK A100s

e \With no previous experience on large scale pretraining at all

CI\/IU 11 667 Fall

Challenge #1:. Many Research Work Don't Scale

Hope: We started with high hopes that all our research improvements at Small will give us a better GPT

We began this experiment lineage with the following settings:

e Batch-size of 2M
FP32 Adam

8x Tensor Parallelism

New data from Experiment 29

LPE with sinusoidal initialization

Normformer

https://github.com/facebookresearch/metaseq/blob/main/projects/OPT/chronicles/10_percent_update.md CM 1 667 Fa”

Challenge #1:. Many Research Work Don't Scale

Reality: Short timeline, Big money on the line, Nothing too fancy

By this point, even though we made it past 1k updates without grad norms exploding or nans everywhere, it appeared as if training was going
to stagnate (see the pink line above of the training ppl from update 4750 to ~6700 with experiment 11.10). We decided to follow through with
our "plan B" that we set for ourselves on October 18 before starting any of these runs, where we would abort from these configurations
(derived from the lineage of all the previous dense experiments conducted with the Fairseq codebase) and adopt as much of the

Megatron/OpenAl GPT-3 settings as possible.

e We chose this path due to the fact that we need 33 days to fully train at this scale with 1024 80GB A100s, and time was running out before
EQY hit. We also needed to buffer in time to evaluate this model on downstream tasks before EQY as well.

* We could keep going down the path of tweaking the experiment 11.xx lineage, but we have no pre-existing knowledge we would be able
to make consistent progress in that time.

e Megatron/OpenAl GPT-3 settings are consistent with each other and have both been supposedly used to successfully train a 175B model

(and above).

From all the things we changed in 11.xx, the main set of changes that were left to bridge the gap with Megatron/OpenAl settings were:

e Overall weight initialization
e Removing Normformer, removing embedding scaling, and changing LPE initialization to standard embedding init and not sinusoidal init

L Z

CMU 11-667 Fall 20

https://github.com/facebookresearch/metaseq/blob/main/projects/OPT/chronicles/10_percent_update.md

Challenge #2: Hardware Failures

GPU machines are not very reliable. With 1024 A100s, it is guaranteed to have bad nodes.
Update on 175B Training Run: 27% through #

Written by: Susan Zhang, Stephen Roller, Naman Goyal, Sam Shleifer, Myle Ott

Posted on: December 3, 2021

It's been really rough for the team since the November 17th update. Since then, we've had 40+ restarts in the 175B experiment for a variety of
—
hardware, infrastructure, or experimental stability issues.

The vast majority of restarts have been due to hardware failures and the lack of ability to provision a sufficient number of "buffer" nodes to
replace a bad node with once it goes down with ECC errors. Replacement through the cloud interface can take hours for a single machine, and
we started finding that more often than not we would end up getting the same bad machine again. Nodes would also come up with NCCL/IB

issues, or the same ECC errors, forcing us to start instrumenting a slew of automated testing and infrastructure tooling ourselves. Some of these
include:

e Replacing nodes through a script

Adding GPU burn-in testing to detect memory errors

Automating IB testing

Monitoring train.log

https://github.com/facebookresearch/metaseq/blob/main/projects/OPT/chronicles/27_percent_update.md

CM

Challenge #2: Hardware Failures

Solution? Hopefully better tooling in the future, but right now:

All in all, working around infrastructure issues has dominated the last two weeks of the team's time, given that these hardware issues can take
the experiment down for hours at any time of the day. While we were fully aware that these issues would come up during training at this scale,
given the time crunch of shipping a trained 175B model by end of H2 2021, we had no choice but to launch and see how far we would get
without this additional tooling. Thanksgiving break was a painful reminder that automation on this front is necessary when training at this scale,
and that cloud infrastructure instability is something to always prepare for, given lack of control over the underlying hardware.

CMU11-667Fall 2024~

Challenge #2: Hardware Failures

Forming an on-call group to watch OPT training

We are also happily inviting people to join our on-call. We have established runbooks and some tooling for dealing with the most common
issues. Those who join this on-call will get firsthand experience at training a model at this scale, which will be valuable for all future large-scale
efforts. However, each hour the experiment stagnates or goes down costs us $$, so the goal of the on-call is to minimize this downtime.

Alchemy Furnace of
the LLM Era

We Watching LLM
Training

CMU11-667Fall 202

Challenge #3: Optimization Stability

Lots of optimization stability issues:

e | 0ss explodes, gradients overflows/underflows, training stagers...

Since the sleepless night of Thanksgiving break, this past week has been filled with gradient overflow errors / loss scale hitting the minimum
threshold (which was put in place to avoid underflowing) which also causes training to grind to a halt. We restarted from previous checkpoints
a couple of times, and found that occasionally training would get a bit further (~100 or more steps) before hitting the same issue again. At this
point, we tried something a bit more drastic by testing out "SGD"-like settings for Adam (by setting betal to 0, and epsilon to 1), only to realize
that reinitializing the Adam optimizer from a checkpoint also reloaded the previously saved betas. We tried switching to true vanilla SGD then,
which required implementing an FP16-friendly version immediately, only to find that our learning rate might have been set too low for SGD to
actually make progress.

As of this morning, we have made the decision to continue with Adam but instead try lowering the LR, which seems to have a surprising effect
on reducing gradient and activation norms and allowing perplexity to continue dropping steadily. We had chosen initially to start with a much
higher LR than GPT-3 175B, given ablations at smaller scale showing that GPT-3 LR settings were too low when trained in the fairseq codebase.

However, now that we are later in training, it seems like the LR may not be decaying fast enough to keep training stable.

/ 7777 e
Z 771777 e 7/ /
L ELAIF T

U11-667Fall 2024~

CM

Challenge #3: Optimization Stability

Infrastructure issues aside, there have also been a few close calls with training stability. On run 12.43, we noticed grad norm and activation
norm starting to spike/drift (light blue curve):

Run * Pinned 4 cards

run12.23/train_inner

ppl H : actv_norm
run12.31/train_inner

4200

run12.33/train_inner

run12.39/train_inner

run12.42/train_inner

@
@
®
®
@
@)

run12.43/train_inner

run12.44/train_inner

run12.45/train_inner

run12.45.2/train_inner

run12.46/train_inner

run12.46.2/train_inner

run12.47/train_inner

run12.47.myle_rerun/train_inner

run12.47.myle_rerun2/train_inner

run12.47.myle_rerun3/train_inner

O|O|0|DO|Oo(O|la|o|O
@0 00060 0060 00

run12.48/train_inner

e 2 P e P e 2

67 CMU 11-667 Fall 2024

Challenge #3: Optimization Stability

In response, we lowered our learning rate by 10%, which was sufficient for stabilizing our grad norm and activation norm. This happened again
on run 12.45.2 (below), where our training perplexity started to diverge (light blue) after a few large grad norm spikes. We lowered our learning
rate at this point to 2/3 of what OpenAl 175B GPT-3 used, and managed to continue training.

Run * Pinned 4 cards
run12.23/train_inner

pp! : H actv_norm
run12.31/train_inner

run12.33/train_inner

®@ 0@ ® €%

run12.39/train_inner

run12.42/train_inner

® 0

run12.43/train_inner

run12.44/train_inner

run12.45/train_inner

run12.45.2/train_inner

run12.46/train_inner

run12.46.2/train_inner

® 0 0 0o

run12.47/train_inner

run12.47.myle_rerun/train_inner

run12.47.myle_rerun2/train_inner

run12.47.myle_rerun3/train_inner

run12.48/train_inner

® e 0o

29527202002

Challenge #3: Optimization Stability

We managed to hit our top three record long runs of the experiment these past two weeks, lasting 1.5, 2.8, and 2 days each! If we were to look
at only the runs that have contributed to pushing training further and plot training perplexity against wall clock time, we get the following:

Mon 15 Wed 17 Fri19 Nov 21 Tue 23 Thu 25 Sat 27 Mon 29 December Fri 03 Dec 05 Tue 07 Thu 09 Sat 11 Mon 13

69 CMU 11- 667 Fall 2024°

The Importance of Scaling Law

Essential to determine what to do at large scale using observations at smaller scale

® DeepMind just released details last week on their 280B Gopher model (GPT-style) that was trained a year ago (for reference, OpenAl
released GPT-3 details on May 2020).
o What goes unmentioned in all of these large-scale efforts is the amount of compute needed to run all of the experiments that help
inform decisions about how/what to scale. This will be something we need account for in the future as well, if we want to continue
pushing the limits of these large-scale models. In other words, allocating just enough compute budget to train a large-scale model

won't be enough to guarantee a better model.

/ 7777 e
Z 771777 e 7/ /
L ELAIF T

U11-667Fall 2024~

CM

Final Remarks from OPT

As of yesterday, at 12:46pm PST on January 6, our 175B model finally completed its training run on 300B tokens. This required ~4.30E+23

FLOPs of compute, or roughly ~33 days of continuous training on 1024 80GB A100s (assuming no hardware issues, no numerical instabilities,
etc.).

To frame this:

e The 175B GPT-3 model trained by OpenAl required 14.8 days of compute on 10,000 V100s, and consumed 3.14+23 FLOPs. The code to do
so is not open-sourced.

* This was not a benchmarking exercise. The model was trained to "completion" with a corpus of 180B tokens. We did not have time to
curate a larger dataset before training started, given a tight deadline to deliver by the end of H2 2021.

¢ Scaling to 1024 A100s to handle a real workload of this size is highly nontrivial. We will discuss infrastructure pain-points below.

® Ensuring training converges at this scale is also highly nontrivial without sufficient ablations at "medium" scale. Results obtained from

training at "small" scale (< ~13B params) also do not necessarily hold when "scaled-up". We will cover these learnings in a note to be
released in the upcoming weeks.

CMU 11-667 Fall 2024

Other Notable Literatures in Scaling Up

Different configurations of layer normalization: pre layernorm, post layernorm and their combination
e Xiong et al. "On Layer Normalization in the Transformer Architecture”. ICML 2020

e /hangand Sennrich. “"Root Mean Square Layer Normalization”. NeurlPS 2019

Position embeddings for longer contexts and expressiveness

e Su et al "Roformer: Enhanced transformer with rotary position embedding.” arXiv 2021

Stability improvement from adaptive initialization

e |ju etal "Understanding the Difficulty of Training Transformers”. EMNLP 2020

F 177 ’
i

