
Please download and install the Slido
app on all computers you use

Audience Q&A

ⓘ Start presenting to display the audience questions on this slide.

2 CMU 11-667 Fall 2024CMU 11-667 Fall 2024

Announcements

3 CMU 11-667 Fall 2024CMU 11-667 Fall 20243 CMU 11-667 Fall 2024

Scaling Up LLM Pretraining:
Parallel Training

Large Language Models: Methods and Applications

Daphne Ippolito and Chenyan Xiong

4 CMU 11-667 Fall 2024CMU 11-667 Fall 2024

Learning Objectives
Optimizer
● Understand various standard optimization methods used for LLM pretraining
● Understand the differences of different numerical types and their usage

Parallel Training
● Understand the standard parallel training methods in LLM pretraining
● Able to implement basic parallel training methods for pretraining (HW5)
● Understand the trade-offs introduced in each parallel training methods

5 CMU 11-667 Fall 2024CMU 11-667 Fall 2024

Outline
Optimization
● Optimization Basics
● Numerical Types

Parallel Training
● Data Parallelism
● Pipeline Parallelism
● Tensor Parallelism
● Combination of Parallelism
● ZeRO Optimizer

6 CMU 11-667 Fall 2024CMU 11-667 Fall 2024

Optimization: Recap of Stochastic Gradient Descent
In deep learning, mini-batch learning is the norm and Stochastic Gradient Descent (SGD) is the basis
optimizer

Compared to classic convex optimization:
● Each step only uses a small sub sample of data: stochastic sampling
● Non-convex optimization has many local optimal with different effectiveness

[1] Sebastian Ruder. “An overview of gradient descent optimization Algorithms”. arXiv 2017

7 CMU 11-667 Fall 2024CMU 11-667 Fall 2024

Optimization: Recap of Stochastic Gradient Descent
In deep learning, mini-batch learning is the norm and Stochastic Gradient Descent (SGD) is the basis
optimizer

Challenge: How to select the right step size?
● Different parameters have different behaviors:

○ norm, sensitivity, influence to optimization process, etc.
○ have different preferences on step size

● No way to manually tune step size per parameter
○ Millions or billions of hyperparameters to tune SGD on two parameter loss contours [1]

[1] Sebastian Ruder. “An overview of gradient descent optimization Algorithms”. arXiv 2017

8 CMU 11-667 Fall 2024CMU 11-667 Fall 2024

Optimization: Challenge of SGD
In deep learning, mini-batch learning is the norm and Stochastic Gradient Descent (SGD) is the basis
optimizer

Challenge: How to select the right step size?
→Solution: Dynamic learning rate per parameter, Adaptive gradient methods (AdaGrad [2])

Reweight per parameter step size by
its accumulated past norm

[2] Duchi et al. “Adaptive Subgradient Methods for Online Learning and Stochastic Optimization”. JMLR 2011

9 CMU 11-667 Fall 2024CMU 11-667 Fall 2024

Optimization: Challenge of SGD
●

Reweight per parameter step size by
its accumulated past norm

[2] Duchi et al. “Adaptive Subgradient Methods for Online Learning and Stochastic Optimization”. JMLR 2011

10 CMU 11-667 Fall 2024CMU 11-667 Fall 2024

Optimization: Challenge of SGD
In deep learning, mini-batch learning is the norm and Stochastic Gradient Descent (SGD) is the basis
optimizer

Challenge: Local updates
● Only uses information from current mini-batch

○ Can easily stuck in local optima

[3] https://towardsdatascience.com/a-visual-explanation-of-gradient-descent-methods-momentum-adagrad-rmsprop-adam-f898b102325c

Optimization with Local Optima [3]

11 CMU 11-667 Fall 2024CMU 11-667 Fall 2024

Optimization: Challenge of SGD
●

[1] Sebastian Ruder. “An overview of gradient descent optimization Algorithms”. arXiv 2017

Momentum of Gradient
Updating with gradient momentum

12 CMU 11-667 Fall 2024CMU 11-667 Fall 2024

Optimization: Challenge of SGD
●

[1] Sebastian Ruder. “An overview of gradient descent optimization Algorithms”. arXiv 2017

Momentum of Gradient
Updating with gradient momentum

SGD with and without Momentum [1]

13 CMU 11-667 Fall 2024CMU 11-667 Fall 2024

Optimization: Adam Optimizer
Adam: Adaptive Moment Estimation [4]

[4] Kingma and Ba. “Adam: A Method for Stochastic Optimization”. ICLR 2015

14 CMU 11-667 Fall 2024CMU 11-667 Fall 2024

Optimization: Adam Optimizer
Adam: Adaptive Moment Estimation [4]

[4] Kingma and Ba. “Adam: A Method for Stochastic Optimization”. ICLR 2015

Hyperparameters that you can/should tune

Initializations

15 CMU 11-667 Fall 2024CMU 11-667 Fall 2024

Optimization: Adam Optimizer
Adam: Adaptive Moment Estimation [4]

[4] Kingma and Ba. “Adam: A Method for Stochastic Optimization”. ICLR 2015

Hyperparameters that you can/should tune

Initializations

Standard back-propagation for raw gradients

16 CMU 11-667 Fall 2024CMU 11-667 Fall 2024

Optimization: Adam Optimizer
Adam: Adaptive Moment Estimation [4]

[4] Kingma and Ba. “Adam: A Method for Stochastic Optimization”. ICLR 2015

Hyperparameters that you can/should tune

Initializations

Standard back-propagation for raw gradients

 Get 1st and 2nd order momentum of gradient

17 CMU 11-667 Fall 2024CMU 11-667 Fall 2024

Optimization: Adam Optimizer
Adam: Adaptive Moment Estimation [4]

[4] Kingma and Ba. “Adam: A Method for Stochastic Optimization”. ICLR 2015

Hyperparameters that you can/should tune

Initializations

Standard back-propagation for raw gradients

 Get 1st and 2nd order momentum of gradient

 Correct momentum bias

18 CMU 11-667 Fall 2024CMU 11-667 Fall 2024

Optimization: Adam Optimizer
Adam: Adaptive Moment Estimation [4]

[4] Kingma and Ba. “Adam: A Method for Stochastic Optimization”. ICLR 2015

Hyperparameters that you can/should tune

Initializations

Standard back-propagation for raw gradients

 Get 1st and 2nd order momentum of gradient

 Correct momentum bias

Update by 1st order momentum

Dynamic per-parameter step size by 2nd order momentum

19 CMU 11-667 Fall 2024CMU 11-667 Fall 2024

Optimization: Illustrations

[1] Sebastian Ruder. “An overview of gradient descent optimization Algorithms”. arXiv 2017

SGD optimization on loss surface contours [1] SGD optimization on saddle point [1]

20 CMU 11-667 Fall 2024CMU 11-667 Fall 2024

Optimization: Extensions of Adams
Adam is the go-to optimizer for deep learning now
● Combines two effective idea: momentum and dynamic learning rates
● Works very well in a large range of network work architectures and tasks
● Many of LLMs are pretrained using Adam or its extensions. (Almost all common ones.)

21 CMU 11-667 Fall 2024CMU 11-667 Fall 2024

Optimization: Extensions of Adams
Adam is the go-to optimizer for deep learning now
● Combines two effective idea: momentum and dynamic learning rates
● Works very well in a large range of network work architectures and tasks
● Many of LLMs are pretrained using Adam or its extensions. (Almost all common ones.)

Notable Extensions:
● Reducing the memory footprint of momentum states:

○ AdaFactor
○ 8-Bit Adam

● Better warmup optimizer stage:
○ RAdam

● More information in dynamic learning rate:
○ AdamSAGE (Sensitivity)
○ Sophia (2nd order optimizer approximation)

Please download and install the Slido
app on all computers you use

Audience Q&A

ⓘ Start presenting to display the audience questions on this slide.

23 CMU 11-667 Fall 2024CMU 11-667 Fall 2024

Outline
Optimization
● Optimization Basics
● Numerical Types

Parallel Training
● Data Parallelism
● Pipeline Parallelism
● Tensor Parallelism
● Combination of Combination
● ZeRO Optimizer

24 CMU 11-667 Fall 2024CMU 11-667 Fall 2024

Numerical Types: Basic Types
Floating point formats supported by acceleration hardware

● BF16 is supported on TPU before LLM (2019 or earlier)
● FP32 and FP16 was the only option before A100. BF16 was not supported at hardware level
● BF16 was first supported in GPUs around 2021

Floating Point Formats [5]

[5] https://cloud.google.com/blog/products/ai-machine-learning/bfloat16-the-secret-to-high-performance-on-cloud-tpus

25 CMU 11-667 Fall 2024CMU 11-667 Fall 2024

Numerical Types: Neural Network Preferences
Neural networks prefer bigger range than better precision

● Many computation needs bigger range than FP16

Histogram of gradient values in a FP32 training [6]

[6] Narang et al. “Mixed Precision Training ”. ICLR 2018

26 CMU 11-667 Fall 2024CMU 11-667 Fall 2024

Numerical Types: Mixed Precision Training
Using different numerical types at different part of the training process
● Parameters, activations, and gradients often use FP16
● Optimizer states often needs FP32

Maintaining main copies of FP32 for calculations
Dynamically scaling up loss to fit gradients etc. in FP16 range

[6] Narang et al. “Mixed Precision Training ”. ICLR 2018

27 CMU 11-667 Fall 2024CMU 11-667 Fall 2024

Numerical Types: Mixed Precision Training
Using different numerical types at different part of the training process
● Parameters, activations, and gradients often use FP16
● Optimizer states often needs FP32

Maintaining main copies of FP32 for calculations
Dynamically scaling up loss to fit gradients etc. in FP16 range

[6] Narang et al. “Mixed Precision Training ”. ICLR 2018

An Example Mixed Precision Training Set up [6]

28 CMU 11-667 Fall 2024CMU 11-667 Fall 2024

Numerical Types: BF16
BF16 is the preferred numerical type on A100 and H100

● Same range as FP32: eliminated the needs for mixed precision training while being way more stable
● Coarse precision: mostly fine, only a few places in neural network need more fine-grained precision

Floating Point Formats [5]

[5] https://cloud.google.com/blog/products/ai-machine-learning/bfloat16-the-secret-to-high-performance-on-cloud-tpus

Coarse Precision

Please download and install the Slido
app on all computers you use

Audience Q&A

ⓘ Start presenting to display the audience questions on this slide.

30 CMU 11-667 Fall 2024CMU 11-667 Fall 202430 CMU 11-667 Fall 2024

Outline

Parallel Training

● Data Parallelism

● Pipeline Parallelism

● Tensor Parallelism

● Combination of Parallelism

● ZeRO Optimizer

31 CMU 11-667 Fall 2024CMU 11-667 Fall 202431 CMU 11-667 Fall 2024

Parallel Training: Overview

●

32 CMU 11-667 Fall 2024CMU 11-667 Fall 202432 CMU 11-667 Fall 2024

Parallel Training: Data Parallelism

Transformer
Layer

Transformer
Layer

Forward Pass

Backward
Pass

GPU 1 GPU 2 GPU 3

Transformer
Layer

Transformer
Layer

Transformer
Layer

Transformer
Layer

Split training data batch into different GPUs
• Each GPU maintains its own copy of model and optimizer
• Each GPU gets a different local data batch, calculates its gradients

33 CMU 11-667 Fall 2024CMU 11-667 Fall 202433 CMU 11-667 Fall 2024

Parallel Training: Data Parallelism

Transformer
Layer

Transformer
Layer

Forward Pass

Backward Pass

GPU 1 GPU 2 GPU 3

Transformer
Layer

Transformer
Layer

Transformer
Layer

Transformer
Layer

All Gather

Global Gradients:

Split training data batch into different GPUs
• Each GPU maintains its own copy of model and optimizer
• Each GPU gets a different local data batch, calculates its gradients
• Gather local gradients together to each GPU for global updates

34 CMU 11-667 Fall 2024CMU 11-667 Fall 202434 CMU 11-667 Fall 2024

Parallel Training: Data Parallelism

Transformer
Layer

Transformer
Layer

Forward Pass

Backward Pass

GPU 1 GPU 2 GPU 3

Transformer
Layer

Transformer
Layer

Transformer
Layer

Transformer
Layer

All Gather

Global Gradients:

Split training data batch into different GPUs
• Each GPU maintains its own copy of model and optimizer
• Each GPU gets a different local data batch, calculates its gradients
• Gather local gradients together to each GPU for global updates

Communication:
• The full gradient tensor

between every pair of GPUs, at
each training batch.

• Not an issue between GPUs in
the same machine or
machines with infinity band

• Will need work around without
fast cross-GPU connection

35 CMU 11-667 Fall 2024CMU 11-667 Fall 202435 CMU 11-667 Fall 2024

LLM size grew quickly and passed the limit of single GPU memory

Solution: Split network parameters (thus their gradients and corresponding optimizer states) to different GPUs

Parallel Training: Model Parallelism

Cost of 10B
Model

Parameter Bytes 20GB
Gradient Bytes 20GB
Optimizer State: 1st Order
Momentum 20GB
Optimizer State: 2nd Order
Momentum 20GB
Total Per Model Instance 80GB

36 CMU 11-667 Fall 2024CMU 11-667 Fall 202436 CMU 11-667 Fall 2024

Parallel Training: Model Parallelism

Transformer Layer

Transformer Layer

Pipeline Parallelism

GPU 1

GPU 2

Split by Layers

Transformer Layer

Transformer Layer

Tensor Parallelism

GPU 1 GPU 2

Split Tensors

Two ways of splitting network parameters

37 CMU 11-667 Fall 2024CMU 11-667 Fall 202437 CMU 11-667 Fall 2024

Split network by layers, aligning devices by layer order to a pipeline, and pass data through devices [7]

Parallel Training: Pipeline Parallelism

[7] Huang et al. “GPipe: Easy Scaling with Micro-Batch Pipeline Parallelism”. NeurIPS 2019

Illustration of Pipeline Parallelism [7]

Transformer Layer

Transformer Layer

Pipeline Parallelism

GPU 1

GPU 2

Split by Layers

38 CMU 11-667 Fall 2024CMU 11-667 Fall 202438 CMU 11-667 Fall 2024

Split network by layers, aligning devices by layer order to a pipeline, and pass data through devices [7]

Parallel Training: Pipeline Parallelism

[7] Huang et al. “GPipe: Easy Scaling with Micro-Batch Pipeline Parallelism”. NeurIPS 2019

Illustration of Pipeline Parallelism [7]

Split batches for more
fine-grained pipelines

39 CMU 11-667 Fall 2024CMU 11-667 Fall 202439 CMU 11-667 Fall 2024

Split network by layers, aligning devices by layer order to a pipeline, and pass data through devices [7]

Parallel Training: Pipeline Parallelism

[7] Huang et al. “GPipe: Easy Scaling with Micro-Batch Pipeline Parallelism”. NeurIPS 2019

Illustration of Pipeline Parallelism [7]

Communication:
• Activations between nearby devices

in forward pass
• Partial gradients between nearby

devices in backward

40 CMU 11-667 Fall 2024CMU 11-667 Fall 202440 CMU 11-667 Fall 2024

Split network by layers, aligning devices by layer order to a pipeline, and pass data through devices [7]

Pros: Conceptually simple and not coupled with network architectures. All networks have multiple layers.
Cons: Waste of compute in the Bubble. Bubble gets bigger with more devices and bigger batches.

Parallel Training: Pipeline Parallelism

[7] Huang et al. “GPipe: Easy Scaling with Micro-Batch Pipeline Parallelism”. NeurIPS 2019

Illustration of Pipeline Parallelism [7]

Communication:
• Activations between nearby devices

in forward pass
• Partial gradients between nearby

devices in backward

Please download and install the Slido
app on all computers you use

Audience Q&A

ⓘ Start presenting to display the audience questions on this slide.

42 CMU 11-667 Fall 2024CMU 11-667 Fall 202442 CMU 11-667 Fall 2024

Outline

Parallel Training

● Data Parallelism

● Pipeline Parallelism

● Tensor Parallelism

● Combination of Parallelism

● ZeRO Optimizer

43 CMU 11-667 Fall 2024CMU 11-667 Fall 202443 CMU 11-667 Fall 2024

Split the parameter tensors of network layers into different devices for parallel matrix operations

Parallel Training: Tensor Parallelism

Tensor Parallelism of MLP blocks and Self-attention Blocks [8]

[8] Shoeybi et al. “Megatron-LM: Training Multi-Billion Parameter Language Models Using Model Parallelism”. arXiv 2019

44 CMU 11-667 Fall 2024CMU 11-667 Fall 202444 CMU 11-667 Fall 2024

Split the parameter tensors of network layers into different devices for parallel matrix operations

Parallel Training: Tensor Parallelism

[8] Shoeybi et al. “Megatron-LM: Training Multi-Billion Parameter Language Models Using Model Parallelism”. arXiv 2019

Tensor Parallelism of MLP blocks and Self-attention Blocks [8]

45 CMU 11-667 Fall 2024CMU 11-667 Fall 202445 CMU 11-667 Fall 2024

Split the parameter tensors of network layers into different devices for parallel matrix operations

Pros: No bubble
Cons: Different blocks are better split differently, lots of customizations

Parallel Training: Tensor Parallelism

[8] Shoeybi et al. “Megatron-LM: Training Multi-Billion Parameter Language Models Using Model Parallelism”. arXiv 2019

Tensor Parallelism of MLP blocks and Self-attention Blocks [8]

46 CMU 11-667 Fall 2024CMU 11-667 Fall 202446 CMU 11-667 Fall 2024

Split the parameter tensors of network layers into different devices for parallel matrix operations

Parallel Training: Tensor Parallelism

Communication of Tensor Papalism for a Transformer Layer [8]

Communication:
• All-gather of partial activations and gradients for each split tensor

[8] Shoeybi et al. “Megatron-LM: Training Multi-Billion Parameter Language Models Using Model Parallelism”. arXiv 2019

47 CMU 11-667 Fall 2024CMU 11-667 Fall 202447 CMU 11-667 Fall 2024

Parallel Training: Combining Different Parallelism
Often data parallelism and model parallelism are used together.
• No need not to use data parallelism

Pipeline Parallelism and Tensor Parallelism can also be used together.

[9] Narayanan et al. “Efficient Large-Scale Language Model Training on GPU Clusters Using Megatron-LM”. SC 2021.

Combination of Tensor Parallelism and Pipeline Parallelism [9]

Please download and install the Slido
app on all computers you use

Audience Q&A

ⓘ Start presenting to display the audience questions on this slide.

49 CMU 11-667 Fall 2024CMU 11-667 Fall 202449 CMU 11-667 Fall 2024

Outline

Parallel Training

● Data Parallelism

● Pipeline Parallelism

● Tensor Parallelism

● Combination of Combination

● ZeRO Optimizer

50 CMU 11-667 Fall 2024CMU 11-667 Fall 202450 CMU 11-667 Fall 2024

ZeRO: Redundancy in Data Parallelism
Majority of GPU memory consumption is on the optimization side: gradients and optimizer momentums

Cost of 10B
Model

Parameter Bytes 20GB
Gradient Bytes 20GB
Optimizer State: 1st Order
Momentum 20GB
Optimizer State: 2nd Order
Momentum 20GB
Total Per Model Instance 80GB

51 CMU 11-667 Fall 2024CMU 11-667 Fall 202451 CMU 11-667 Fall 2024

ZeRO: Reduce Memory Redundancy
ZeRO Optimizer: Split GPU memory consumption into multiple GPUs during data parallelism

[10] Rajbhandari et al. “ZeRO: Memory Optimizations Toward Training Trillion Parameter Models”. arXiv 2019.

ZeRO Optimizer Stages [10]

Stage 1: Split Optimizer States

Stage 2: +Split Gradients

52 CMU 11-667 Fall 2024CMU 11-667 Fall 202452 CMU 11-667 Fall 2024

ZeRO: Redundancy in Data Parallelism
ZeRO Stage 1 and 2: reducing memory redundancy

Observation:
• In data parallelism, each

device only has access to local
gradient

• All gather operation required
on all gradients anyway

53 CMU 11-667 Fall 2024CMU 11-667 Fall 202453 CMU 11-667 Fall 2024

ZeRO: Redundancy in Data Parallelism
An example way to implement ZeRO Stage 1

Transformer Layer

Transformer Layer

Forward Pass

Backward Pass

Transformer Layer

Transformer Layer

Transformer Layer

Transformer Layer

All Gather

Sharded 1st Momentum

GPU 1 GPU 2 GPU 3

 Sharded 2nd Momentum

Adam Parameter Updates

54 CMU 11-667 Fall 2024CMU 11-667 Fall 202454 CMU 11-667 Fall 2024

ZeRO: Reduce Memory Redundancy
ZeRO Optimizer: Split GPU memory consumption into multiple GPUs during data parallelism

[10] Rajbhandari et al. “ZeRO: Memory Optimizations Toward Training Trillion Parameter Models”. arXiv 2019.

ZeRO Optimizer Stages [10]

Stage 1: Split Optimizer States

Stage 2: +Split Gradients

Communication

Free ride with data parallelism

Free ride with data parallelism

55 CMU 11-667 Fall 2024CMU 11-667 Fall 202455 CMU 11-667 Fall 2024

ZeRO Optimizer: Split GPU memory consumption into multiple GPUs during data parallelism

ZeRO: Reduce Memory Redundancy

[10] Rajbhandari et al. “ZeRO: Memory Optimizations Toward Training Trillion Parameter Models”. arXiv 2019.

ZeRO Optimizer Stages [10]

Stage 1: Split Optimizer States

Stage 2: +Split Gradients

Stage 3: +Split Parameters

Communication

Free ride with data parallelism

Free ride with data parallelism

56 CMU 11-667 Fall 2024CMU 11-667 Fall 202456 CMU 11-667 Fall 2024

ZeRO: Redundancy in Data Parallelism
Sharding parameters and passing them when needed

Transformer Layer

Transformer Layer

Forward Pass

Backward Pass

Transformer Layer

Transformer Layer

Transformer Layer

Transformer Layer

All Gather

Sharded 1st Momentum

GPU 1 GPU 2 GPU 3

 Sharded 2nd Momentum

Adam Parameter Updates

57 CMU 11-667 Fall 2024CMU 11-667 Fall 202457 CMU 11-667 Fall 2024

ZeRO: Reduce Memory Redundancy
ZeRO Optimizer: Split GPU memory consumption into multiple GPUs during data parallelism

Pros: Stage 1 and 2 free ride with data parallelism with huge GPU memory savings
Cons: Open-source support not as good
Notes: Stage 3 is different with tensor parallelism. It passes parameters when needed but still performs
computations of the full layer/network in one GPU. It is data parallelism with GPU memory sharding

[10] Rajbhandari et al. “ZeRO: Memory Optimizations Toward Training Trillion Parameter Models”. arXiv 2019.

ZeRO Optimizer Stages [10]

Stage 1: Split Optimizer States

Stage 2: +Split Gradients

Stage 3: +Split Parameters

Communication

Free ride with data parallelism

Free ride with data parallelism

All-gather parameters

Please download and install the Slido
app on all computers you use

Audience Q&A

ⓘ Start presenting to display the audience questions on this slide.

59 CMU 11-667 Fall 2024CMU 11-667 Fall 202459 CMU 11-667 Fall 2024

A peek into real large scale
pretraining workflow

Lots of first hand information released through the FAIR OPT pretraining run:

https://github.com/facebookresearch/metaseq/tree/main/projects/OPT/chronicles

60 CMU 11-667 Fall 2024CMU 11-667 Fall 202460 CMU 11-667 Fall 2024

Background

A group of researchers and engineers are tasked with the goal of pretraining a large-scale model like GPT-3

● 1024 A100 80GBs to use. Yes!

Constraints:

● Task given at around Beginning of Nov 2021

● Goal is to pretrain a 175 Billion scale model by end of the year

○ Which at minimum require 33 days on 1K A100s

● With no previous experience on large scale pretraining at all

61 CMU 11-667 Fall 2024CMU 11-667 Fall 202461 CMU 11-667 Fall 2024

Challenge #1: Many Research Work Don’t Scale

Hope: We started with high hopes that all our research improvements at Small will give us a better GPT

https://github.com/facebookresearch/metaseq/blob/main/projects/OPT/chronicles/10_percent_update.md

62 CMU 11-667 Fall 2024CMU 11-667 Fall 202462 CMU 11-667 Fall 2024

Challenge #1: Many Research Work Don’t Scale

Reality: Short timeline, Big money on the line, Nothing too fancy

https://github.com/facebookresearch/metaseq/blob/main/projects/OPT/chronicles/10_percent_update.md

63 CMU 11-667 Fall 2024CMU 11-667 Fall 202463 CMU 11-667 Fall 2024

Challenge #2: Hardware Failures

GPU machines are not very reliable. With 1024 A100s, it is guaranteed to have bad nodes.

https://github.com/facebookresearch/metaseq/blob/main/projects/OPT/chronicles/27_percent_update.md

64 CMU 11-667 Fall 2024CMU 11-667 Fall 202464 CMU 11-667 Fall 2024

Challenge #2: Hardware Failures

Solution? Hopefully better tooling in the future, but right now:

https://github.com/facebookresearch/metaseq/blob/main/projects/OPT/chronicles/27_percent_update.md

65 CMU 11-667 Fall 2024CMU 11-667 Fall 202465 CMU 11-667 Fall 2024

Challenge #2: Hardware Failures

Forming an on-call group to watch OPT training

Alchemy Furnace of
the LLM Era

We Watching LLM
Training

66 CMU 11-667 Fall 2024CMU 11-667 Fall 202466 CMU 11-667 Fall 2024

Challenge #3: Optimization Stability

Lots of optimization stability issues:

● Loss explodes, gradients overflows/underflows, training stagers…

67 CMU 11-667 Fall 2024CMU 11-667 Fall 202467 CMU 11-667 Fall 2024

Challenge #3: Optimization Stability

68 CMU 11-667 Fall 2024CMU 11-667 Fall 202468 CMU 11-667 Fall 2024

Challenge #3: Optimization Stability

69 CMU 11-667 Fall 2024CMU 11-667 Fall 202469 CMU 11-667 Fall 2024

Challenge #3: Optimization Stability

70 CMU 11-667 Fall 2024CMU 11-667 Fall 202470 CMU 11-667 Fall 2024

The Importance of Scaling Law

Essential to determine what to do at large scale using observations at smaller scale

71 CMU 11-667 Fall 2024CMU 11-667 Fall 202471 CMU 11-667 Fall 2024

Final Remarks from OPT

72 CMU 11-667 Fall 2024CMU 11-667 Fall 202472 CMU 11-667 Fall 2024

Other Notable Literatures in Scaling Up

Different configurations of layer normalization: pre layernorm, post layernorm and their combination

● Xiong et al. “On Layer Normalization in the Transformer Architecture”. ICML 2020

● Zhang and Sennrich. “Root Mean Square Layer Normalization”. NeurIPS 2019

Position embeddings for longer contexts and expressiveness

● Su et al. “Roformer: Enhanced transformer with rotary position embedding.” arXiv 2021

Stability improvement from adaptive initialization

● Liu et al. “Understanding the Difficulty of Training Transformers”. EMNLP 2020

